A universal sequence of integers generating balanced Steinhaus figures modulo an odd number

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A universal sequence of integers generating balanced Steinhaus figures modulo an odd number

In this paper, we partially solve an open problem, due to J. C. Molluzzo in 1976, on the existence of balanced Steinhaus triangles modulo a positive integer n, that are Steinhaus triangles containing all the elements of Z/nZ with the same multiplicity. For every odd number n, we build an orbit in Z/nZ, by the linear cellular automaton generating the Pascal triangle modulo n, which contains infi...

متن کامل

Regular Steinhaus graphs of odd degree

A Steinhaus matrix is a binary square matrix of size n which is symmetric, with diagonal of zeros, and whose upper-triangular coefficients satisfy ai,j = ai−1,j−1+ai−1,j for all 2 6 i < j 6 n. Steinhaus matrices are determined by their first row. A Steinhaus graph is a simple graph whose adjacency matrix is a Steinhaus matrix. We give a short new proof of a theorem, due to Dymacek, which states...

متن کامل

On a sequence related to the coprime integers

The asymptotic behaviour of the sequence with general term $P_n=(varphi(1)+varphi(2)+cdots+varphi(n))/(1+2+cdots+n)$, is studied which appears in the studying of coprime integers, and an explicit bound for the difference $P_n-6/pi^2$ is found.

متن کامل

Generating Tuples of Integers modulo the Action of a Permutation Group and Applications

Originally motivated by algebraic invariant theory, we present an algorithm to enumerate integer vectors modulo the action of a permutation group. This problem generalizes the generation of unlabeled graph up to an isomorphism. In this paper, we present the full development of a generation engine by describing the related theory, establishing a mathematical and practical complexity, and exposin...

متن کامل

On transitive polynomials modulo integers

A polynomial P (x) with integer coefficients is said to be transitive modulo m, if for every x, y ∈ Z there exists k ≥ 0 such that P (x) = y (mod m). In this paper, we construct new examples of transitive polynomials modulo prime powers and partially describe cubic and quartic transitive polynomials. We also study the orbit structure of affine maps modulo prime powers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2011

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2010.06.005